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Monitoring of complex technical systems in operation/service is a task concerning safety,
reliability and risk management. Additionally, the monitoring and diagnosis of such systems
is also recommended for the reduction of costs, and to increase the life of systems under
consideration.

The fundamental quantities for monitoring and diagnosis are symptoms contained in
measured data of a time-variant system. Symptoms are observable and sensitive with respect
to faults or damage. Questions such as how to "nd symptoms, how they should be evaluated
for information condensation in order to detect, and if possible to localize, faults or damage,
are discussed, and, additionally, the choice of the measuring matrix and the test forces are
treated in the context of the state space formulation of time-variant models.

For the purpose of information condensation and the evaluation of symptoms,
the symptom observation matrix is introduced and manipulated by the singular value
decomposition. The properties of the observation matrix with its singular values and
singular vectors show their applicability for monitoring and diagnosis.

( 2001 Academic Press
1. PROBLEM FORMULATION

A system in operation is understood here to be a technical system performing its designed
purpose, such as production or service. The mechanical part undergoes ageing, wear, etc.,
and, brie#y, its mechanical properties are time dependent, and tend mostly in the direction
of lowering its operational/service capabilities, safety and reliability. Consequently, a
holistic approach has to be applied, which means that the system life stages have to be
considered starting with the elaboration of need right up to the phase-out, including
recycling [1]. The related mathematical models are therefore time-variant models. For
reasons of safety, operation and serviceability, to reduce costs and to increase the lifetime of
the system under consideration, monitoring of the state condition and diagnosis of the
results of monitoring are recommended, if not essential. Monitoring and diagnosis use
symptoms which must be observable and sensitive to faults or damage as fundamental
quantities. The question immediately arises: how should they be evaluated? This paper
deals with this question and introduces a matrix with lifetime-dependent symptoms, which
is manipulated by singular value decomposition.
022-460X/01/490597#24 $35.00/0 ( 2001 Academic Press



Figure 1. Three domains of evolution of the system in operation/service, dynamic reaction, and physical
properties as observed by evolving symptoms.
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Given a mechanical system with its time-variant description, the current dynamics and
the system evolution obey di!erent time scales. A slow time co-ordinate h designating the
system's evolution (e.g., in months, years) is thus introduced, and, in addition, the fast
time co-ordinate t describing the current dynamics (e.g., in s, min). Figure 1 illustrates the
situation.

The dynamics of the system in the state space at a ("xed) lifetime h is described in the
usual notation by

x5 h(t)"Ahxh(t)#Bhf (t), (1)

assuming 2n components of the state vector xh (t) :"(u@h(t) ) u5 @h (t))@, where the transposition
of the row vector (. ) is designated by (.)@. The following notation is used: uh(t) is the vector of
displacements; Ah the system or state matrix, Bh the input matrix and f(t) the vector of
external forces.

Dots indicate di!erentiation with respect to time. The orders of the related matrices are
given accordingly. The excitation is assumed to be unchanged during the lifetime (lifespan)
h
b
in a "rst approach.
The measuring equation for system observation is written as

yh (t)"Hxh (t) : (2)

m components of the state vector are measured. Consequently, the measuring matrix (or
output matrix) H is an (m, 2n)-matrix. Here, it is also presumed that the measurements are
made during the lifetime in the same manner.

Symptoms as sensitive quantities of a defect/fault/damage of the system with suitable
properties are applied. In general, they indicate a modi"cation of the system [1]. They are
generally independent of the fast time co-ordinate through the application of an integral
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operator ¹l over the time t, where the r various symptoms are designated by the subscript
l, l"1,2, r. Therefore the (r, m)-matrix

T"G
¹
1

¹
2
)

)

)

¹
r

H
applied to the measurements yh(t) results in the vector

s (h)"sh :"Tyh(t)"THxh(t) , (3)

using equation (2), where TH is an (r, 2n)-matrix. Consequently, s(h) is a vector of r
symptoms at the lifetime h; the symptoms are assumed to be dimensionless and normalized.

The symptom observation matrix [2] of a continuously used system, in brief the
observation matrix, is now de"ned as

O"O
pr

:"G
s@h1
s@h2
)

)

)

s@h)p
H"C

sh1,1 sh1,2 2 sh1,r
sh2,1 sh2,2 2 sh2,r
2 2 2 2

shp,1 shp,2 2 shp,r
D . (4)

The observation matrix is a (p, r)-matrix. The various symptom values are ordered
columnwise (symptom vectors of length p), and the rows (observation vectors s@(h) with
r components) represent di!erent lifetimes h

i
, i"1,2, p of the symptoms. The symptom

life-curves [1] are given by the various columns. The elements shi,l , i"1(1)p, l"1(1)r, of
O are assumed to be real. However, there is no di$culty in principle in assuming them to be
complex.

If the symptoms are to be de"ned in an image domain by a pre-de"ned integral transform,
for example by the Fourier transform or by applying (stochastic) time series analysis
(e spectra), then the various time-dependent symptoms are substituted by the
frequency-dependent quantities; for example, the spectral amplitudes taken at "xed
lifetimes. It is also possible to mix the symptom values, which means combining the values
of the di!erent domains. In order to put additional information into the observation matrix
one can add as a column, for instance, the lifetimes themselves taken as the symptoms [2].

The observation matrix can be a very large matrix. For trend forecasts, for example for
turbine generators, it is rAp. This means a rectangular matrix with many more columns
than rows. However, the reverse can also appear, especially when the condition monitoring
system is already developed. The information in the various columns (of the various
symptoms) may di!er only slightly: there is redundant information, which can be avoided
by eliminating the corresponding columns. This recommendation can only be given if one
knows a priori how these symptoms will develop during the lifetime.



600 H. G. NATKE AND C. CEMPEL
Problems arising with the evaluation of the observation matrix have to be seen within the
context of monitoring and diagnostics.

These are the following.

(1) Which symptoms are most representative of defects/faults/damage in the sense of
amplifying modi"cations in the state conditions? It is not only a question of discriminants
and, consequently, of the distinguishability of faults, but it is a question of (selective)
sensitivity and robustness: what is the relationship between symptom and damage? This
question concerns the choice of sh including ¹ (see equation (3)).

(2) Then the question as to how modi"cations of the system can be measured has to be
answered. It concerns the choice of the measuring matrix H (e observability).

(3) If the operating forces cannot be taken for symptom generation, that means if test
forces have to be applied for detecting modi"cations of the system under monitoring, then
Bhf (t) in equation (1) has to be chosen in such a way that modi"cations in Ah(t) are
detectable in the state vector (e controllability), with the restriction that the applied loading
must not increase the fault.

(4) How has the spacing during the lifetime to be chosen for symptom readings?
(5) How can the elimination of redundant information (symptoms) be carried out?
(6) If the singular value decomposition (SVD) is chosen for evaluation, what is the

physical interpretation of the corresponding vectors?
(7) What is the role of observation matrix manipulations, such as symptom scaling,

average value subtractions, etc.?

These questions will be discussed, if not answered, in the following.

2. CHOICE OF SYMPTOMS

The detection and diagnosis of failures/faults/damage, expressed as system modi"cations,
are based on model-aided measurements. Measurements should be reduced to a minimum
number of measures which are most sensitive and informative with respect to the expected
system modi"cations. Measurable quantities which are sensitive to system modi"cations
are called symptoms. Additionally, symptoms should be sensitive to damage evolution
(related to h), but should be insensitive to distortions.

A discriminant is a symptom which is sensitive to a particular fault, and therefore
discriminants allow us to distinguish between various faults evolving in a system.

Features are special arrangements of symptoms which enable us to distinguish between
several faults (with respect to a class). Patterns are established by features in order to
characterize di!erent system conditions.

Weak point analysis and sensitivity investigations are used to discover symptoms.
A symptom should have the following properties (closely following [1], section 2.2):

f directly (e.g., strain) or indirectly measurable (e.g., stress as a model-based
reconstruction);

f functional relationship to a damage measure;
f high sensitivity to a fault/damage as a local property, but robust towards unknown

disturbances as a global property (contradictory requirements which need optimization);
f distinguishability of various terms in the fault model, which also includes fault separation;
f the absolute value is a non-decreasing function of time, unless the system is repaired, etc.;
f permit trend estimation.
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2.1. SYMPTOMS OF LINEAR SYSTEMS DEPENDENT ON h

The following system-related characteristics can serve as symptoms:

f constants (e.g., cross-section measures independent of the fast time co-ordinate t, but
which can be dependent on the lifetime h, e.g., due to corrosion;

f functionals (scalars like an eigenfrequency which, for example, can be expressed as
a lifetime-dependent Rayleigh quotient);

f vectors (discretized function or an assembly of scalar symptoms);
f functions (like eigenfunctions but also lifetime-dependent);
f "eld descriptions (multi-dimensional, for example the velocity "eld of a continuum) by

direct or indirect (model-supported) measured quantities.

Examples of scalars are:

f maximum response max
t
x (h, t);

f input energy;
f r.m.s.-value x

r.m.s.
(h) :"DJ(1/¹) :T

0
x2(h, t) dt D for periodic signals;

f average of the absolute signal x (h, t): x
av

:"(1/¹ ):T
0

Dx (h, t) D dt;
f form (shape) factor x

r.m.s.
(h)/x

av
(h);

f crest factor x
peak

(h)/x
r.m.s.

(h);
f impulse factor x

peak
(h)/x

av
(h);

f variance p2
x
(h) (total power, see reference [3]);

f 4th root of Kurtosis b (h), with b (h) :"(1/¹ ):=
~=

x4 (h, t) dt/((1/¹) :=
~=

x2(h, t) dt)2;
f rice frequency f

r
(h)"xR

r.m.s.
(h)/[2nx

r.m.s.
(h)], where xR

r.m.s.
(h) stands for the r.m.s.-value of

the velocity signal (it is connected with the power spectral density and not with the
probability density function (pdf ) as a variance, etc.).

We distinguish between global and local symptoms in terms of the spatial co-ordinate.
Global symptoms are, for example, the above scalars as enumerated, and the norms
of residuals [4] to be composed, i.e., the output, input and generalized residuals (see
Figures 2}4), with respect to the dynamic responses. The components of the residual vectors
generated from dynamic responses are also global residuals, because they implicitly contain
Figure 3. Input residual.

Figure 2. Output residual.



Figure 4. Generalized residual.

Figure 5. Classi"cation of residuals.
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only the information of local parameter modi"cations. Additionally, the equation error can
be introduced, which in the case of dynamic response problems is equal to the input (force)
residual. In the case of the eigenvalue problem, we can distinguish between the equation
error (zero force residual) and partial residuals, such as the di!erences between the
eigenfrequencies of the damaged and undamaged system, or such as the eigenfrequency
residuals and the corresponding di!erences between the eigenvectors and, in addition,
between the generalized masses. The ful"lment of the generalized orthogonality properties,
etc., can also be taken into account as a possible symptom. Figure 5 gives an overview of
possible residuals. The non-modal residuals are important in engineering, because the
engineer is mostly interested in, for example, stress distributions and acoustic levels. One
obtains local residuals, for example, by taking the elementwise di!erences of the sti!ness
matrices at lifetimes h

i
and h

i`1
. Flexibility and inertia matrices can be taken instead of

sti!ness matrices.
Of course, global residuals can be combined with local ones. One can also choose special

indicators, like the MAC,s [5] etc. Local symptoms with their local information contents
will serve simultaneously for fault detection and localization. The residuals of the modal
vector components taken directly or transformed [6] can also be suitable symptoms for
fault detection.

As already stated in the Introduction, equation (3), the symptom operator T transforms
the measured t-dependent signal yh(t) into the symptom space (see Figure 1), which means it
is only h-dependent: s(h).
sModal assurance criterion (MAC): it is the cosine of the angle between, for example, a measured and
a calculated eigenvector.
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2.2. SYMPTOMS OF NON-LINEAR SYSTEMS DEPENDENT ON h

Non-linear behaviour can result from modi"cations to a linear system. The symptoms
discussed in the previous section can also be applied to non-linear systems. However,
non-linear e!ects di!er fundamentally from linear behaviour. Linearized models cannot
describe the non-linear behaviour. Consequently, when compared with the corresponding
quantities of a linear model, symptoms including non-linear e!ects lead to deviations from
the linear behaviour, so they can serve for detection as violated assumptions of linearity.
Therefore, as already stated, the detection of non-linear behaviour can be performed
indirectly by tests, if one assumes a linear model and looks for violated assumptions. Here
arti"cial harmonic excitation with di!erent levels of response amplitudes is most e!ective.
The principles and characteristics which can be chosen are

f superposition,
f reciprocity,
f parameter independence of sample (initial conditions, damping),
f Nyquist plots (their geometry).

The distortions are sometimes informative (pattern recognition) when one looks, for
example, at distorted Nyquist plots. Non-linearities a!ect the dynamic response most in the
resonance neighbourhood.

Direct methods for detection are based on such symptoms as

f signals due to special excitation and "ltering,
f indicator functions (e.g., SIG-function),
f Hilbert transforms,
f high order correlation functions,
f multispectral density functions,
f dispersion functions,
f histogram measures (pattern classi"cation),
f NARMA, NARMAX models,
f polynomial "ts.

Details of the itemized methods and references can be found in reference [1, section 2.2.3].
Some problems should be mentioned in this context.

f It is hard to distinguish between the bias in the process model and in the noise model.
f Does the detected non-linear behaviour require and also permit a non-linear model?
f Detection in general does not include structure (of the model) identi"cation.
f The choice of inputs and outputs must reveal the structure patterns (complete set of

information with respect to the initial conditions: su$ciently large de#ection amplitudes
without system destruction).

It is noted that the disadvantage of the Fourier transform is the lack of a localization
property: local time modi"cation of a signal changes the transformed signal
everywhere. New developments in the description (detection) of linear and non-linear
behaviour thus apply wavelets [7] and the Wigner distribution [8], which do not have this
disadvantage.
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2.3. SUMMARY

The choice of symptoms is essential for monitoring and diagnostics. It depends on the
dynamic properties of the symptom under monitoring, a priori knowledge and simulations
(weak point analysis) of faults/damage to be expected. Sensitivity here means both with
respect to the possible faults/damage and to the lifetime. The measured quantities are
dependent on t and h, and the application of a suitable transformation generates the
symptoms which are only lifetime-dependent.

3. CHOICE OF THE MEASURING MATRIX

Initially, modi"cations in the system matrix A, denoted by A#DA, are assumed to be
contained in the state vector: x (t)#Dx(t). Here the index h for designating the lifetime-
dependency is suppressed without introducing any confusion. Assuming no changes in the
external forces applied, the resulting model is (see equation (1))

x5 (t)#Dx5 (t)"(A#DA)[x(t)#Dx(t)]#Bf (t). (5)

The measuring equation is as given in equation (2). Suppressing the time argument, it
follows from equation (5) with equation (1) that

Dx5 "DA (x#Dx)#ADx . (6)

With the assumption Dx5 (t)"0 (which has to be proven in every case), the above equation
leads to

Dx+!(A#DA)~1DAx

"!(I#A~1DA)~1A~1DAx (7)

+!(I!A~1DA)A~1DAx ,

with I the unit matrix, and presuming that EA~1DAE@1.
The measuring equation with the modi"cation Dx results in

Dy"HDx . (8)

By inserting equation (7) into the above equation it follows due to linearization of the
modi"cation that

Dy"!H (A#DA)~1DAx

(9)

+!HA~1DAx .

The question now has to be answered: how does H have to be chosen so that the
measured modi"ed dynamic response Dy contains the modi"ed state vector Dx (describing
the system modi"cation DA) to a non-negligible extent?
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3.1. INVESTIGATION BY SENSITIVITY

This is de"ned by the Euclidian norm

p (Dx
k
) :"KK

LDy

LDx
k
KK
2
, k"1,2, 2n.

Equation (8) will be written with the matrix elements h
ik

of H:

Dy"
2n
+
k/1

h
ik
Dx

k
.

It follows that

Ly
i

LDx
k

"h
ik
,

KK
LDy

LDx
k
KK
2
"

2n
+
k/1

h2
ik
.

This clearly means that all components of Dx unequal to zero should be taken into
account by setting the corresponding h

ik
equal to 1, and this complies directly with

equation (8).

3.2. DEPENDENT ON ONE ELEMENT OF THE DYNAMIC STIFFNESS MATRIX

The classic second order formulation of the system is taken in the image domain using the
Laplace transform with s the Laplacian variable,

(s2M#sC#K)U(s)"NP(s), with the dynamic sti!ness matrix S (s) :"s2M#sC#K

(10)

of order n, and where the rectangular input matrix N speci"es the components
with non-zero external forces assembled in the vector P )U(s) and P (s) are the Laplace
transforms of the displacement u (t) and of the external force p (t) respectively. I is the unity
matrix. Let e

k
be the unit vector of a proper dimension with the 1 in the kth component, and

let D be a modi"cation operator applied to S (s); this will result in a modi"cation of the
(k, k)th element S

kk
(s) of S (s) only:

(I#e
k
e@
k
D)S (s)"S (s)#e

k
e@
k
DS(s)"S (s)#C

0 2 0 0 0 2 0

2 2 2 2 2 2 2

0 2 0 DS
kk

(s) 0 2 0

2 2 2 2 2 2 2

0 2 0 0 0 2 0 D . (11)
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The modi"cation of the dynamic sti!ness matrix will lead to a modi"cation of the response
vector, U (s)#DU(s), assuming an unchanged excitation:

(I#e
k
e@
k
D)S (s)[U (s)#DU(s)]"NP(s) . (12)

With the unmodi"ed model it follows that

[S(s)#e
k
e@
k
DS(s)]DU(s)"!e

k
e@
k
DS(s)U (s)"!G

0
)

)

)

DS
kk

(s);
k
(s)

)

)

)

0
H . (13)

The right-hand side of this equation shows that only the kth component is unequal to zero.
The modi"cation of the dynamic response, when suppressing the argument s and second
order terms in the modi"cation is

DU"!(S#e
k
e@
k
DS)~1e

k
e@
k
DSU

"![S (I#S~1e
k
e@
k
DS)]~1e

k
e@
k
DSU

+!(I!S~1e
k
e@
k
DS)S~1e

k
e@
k
DSU

+!S~1e
k
e@
k
DSU

"!S~1 G
0
)

0
DS

kk
;

k
0
)

0
H (14)

with

H"[H
0
, O

n
], (15)

where only displacements are measured, and with

Z(s)#DZ (s) :"H
0
[U(s)#DU(s)]: (16)
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the measuring equation gives

DZ(s)"H
0
DU(s)"H

0
S~1(s) G

0
)

0
DS

kk
(s);

k
(s)

0
)

0
H"DS

kk
(s);

k
(s)H

0 G
S~1
1k

(s)
S~1
2k

(s)
)

)

)

S~1
nk

(s)H (17)

with S~1
ik

(s) the elements of S~1(s)": (S~1
ik

(s)). The matrix H should be chosen so that the
maximum magnitude of the element S~1

ik
(s)DS

kk
(s);

k
(s) is contained.

3.3. RELATION WITH THE OBSERVABILITY

The observability of usual mechanical systems in their discrete formulations concerns
the information within the measurements y (t) (suppressing the index h). &&Completely
observable'' means that the transfer matrix of the system,

H (s) :"H (sI
2n
!A)~1B, (18)

can be completely constructed with the chosen measuring matrix H. The symbol s is, as
usual, the Laplace variable, and K is the diagonal matrix of the eigenvalues. With the
spectral decomposition of the system matrix,

A"QKQ~1, (19)

and with

B"QQ@ C
N

0
n
D , (20)

where the modal matrix Q consists of

Q"C
Q

QKD (21)

with the (n, 2n)-modal matrix

Q"[Q
0
,Q1

0
]

and the modal matrix Q
0

and its conjugate complex Q1
0

of the corresponding second order
di!erential equations of the damped system. The transfer matrix follows with these
de"nitions:

H(s)"H (sI
2n
!A)~1B

"H (sI
2n
!QKQ~1)~1QQ@ C

N

0 D (22)

"HQ(sI
2n
!K)~1Q@ C

N

0D .
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If the following is chosen (see equation (15))

H"[H
1
, 0],

for example, if only displacements are measured, H
1
"H

0
, then the transfer matrix can be

calculated through

H(s)"H
1
Q (sI

n
!K)~1Q@ . (23)

Complete observability is given if no modal vector q
i
, i"1(1)n, exists with

H
1
q
i
"0 . (24)

This requirement is to be seen in the context of modi"cations to systems.
For additional clarity, H(s) can be decomposed by the modal vectors q

i
. If equation (24)

is ful"lled in equation (23), then the information about q
i
is missing, and the transfer matrix

cannot be determined completely.

3.4. SUMMARY

The elements of the (m, 2n) measuring matrix

H"[H
1
, 0]": [h

ik
], G

i"1(1)m,

k"1(1)2n

have to be chosen so that

f for general modi"cations represented as modi"cations of Dx
k

they are contained in
Dy"HDx,

f in the case of a modi"cation DS
kk

(s) the maximum magnitude of the element
S~1
ik

(s)DS
kk

(s);
k
(s) is contained in the measurements, and

f with the modal vectors q
i,
i"1(1)

n
of the eigenvalue problem corresponding to equation

(10) no q
i
exists, ful"lling equation (24).

4. CHOICE OF TEST SIGNALS

If the operating/service forces of the system, which cause realistic stresses, cannot be
taken for monitoring, then test forces have to be applied in such a way that existing faults
will not increase. Specially favoured test forces are impulse, harmonic, periodic and
pseudo-random forces; broadband random forces are seldom applied [3]. The choice
generally depends on the type of fault/damage expected, on its frequency content, on
possibilities concerning the mounting of forcing devices, and the available space for
mounting. In brief, excitation with arti"cial signals requires an optimum test design. This
task also requires the choice of Bhf(t) so that the e!ect of a fault/damage will be excited
directly and can therefore be measured. However, the force has to be restricted in its e!ect
with respect to the second requirement of not increasing the fault/damage.
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The "rst requirement is known as controllability, and it is closely connected with the
observability of the previous section. For classic mechanical systems they are designated as
completely controllable if no eigenvector exists with

q@
i
N"0, i"1(1)n .

Assuming that the fault/damage is detected by monitoring, the next steps consist of the
localization and investigation of the fault e!ects with respect to the use/service of the
system, including the permissible stresses and, therefore, forces. If a mathematical model of
the system is available, this topic requires adjustment to the most recent state. This
adjustment is outside the scope of these considerations, but it is extensively described in
reference [1]. Here the relationships between the measuring matrix, the input matrix and
the observability matrix are of interest.

If no mathematical model of the system or its part with the detected modi"cation is
available, reliability investigations [9] have to be performed based on the symptoms due to
the test forces.

5. PROPERTIES OF THE OBSERVATION MATRIX

The requirements for choosing symptoms have been discussed in the previous sections,
including those for the input matrix and the measurement matrix. The observation matrix
de"ned in equation (4) can now be made. It is, in general, a huge matrix which has to be
handled in such a way that maximum information about the fault/damage is obtained. In
order to answer the questions posed in the Introduction, "rst handling using the SVD
currently recommended is discussed. The problems with respect to handling huge matrices
with measured data, redundant information, and lifetime spacings will then be outlined.

5.1. THE SINGULAR VALUE DECOMPOSITION

In condition monitoring, the symptoms assembled in the observation matrix (4) are
essential. The SVD applied to the observation matrix is discussed with some examples in
reference [2]. In order to understand and extend these results the following must "rst be
repeated.

5.1.1. Singular values and singular vectors as characteristics of the system life

It must be stressed that the observation matrix (see equation (4)) O is a (p, r)-matrix: O
pr

.
Each of its rows is the observation vector with r symptom values as its components for each
measured lifetime. The symptom vectors with components dependent on the lifetime are
contained in the observation matrix as column vectors for p lifetimes.

The SVD of equation (4) reads [10] as

U@
pp

O
pr
V
rr
"R

pr
(25)

with U
pp

the orthogonal matrix of the left singular vectors u
i
, i"1(1)p, and V

rr
the

orthogonal matrix of the right singular vectors vl , l"1(1)r, and the &&subdiagonal'' matrix
R
pr

of the singular values (SV) p
i
O0, if n is the rank of O

pr
, n)l"min(p, r). The
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observation matrix (4) can therefore be decomposed as

O
pr
"U

n
R

n
V @
n

(26)

"Rn
i/1

p
i
) (u

i
v@
i
)":Rn

i/1
(O

pr
)
i
with rank(O

pr
)"n ,

and with the SVs

p
1
*p

2
*2*p

n
'p

n`1
"2"p

l
"0.

The second line of the observation matrix (26) is a fault-orientated decomposition. As can be
seen from equation (26), if one fault is characterized by the index J within the decomposition
(e discriminant [1]), then the observation matrix contains this information in the
superposition of all SVs and corresponding dyadic products of the singular vectors.

Assuming a fault/damage characterized by the index J of the SVs, it follows [10] that

O
pr

v
J
"r

J
u
J

and O@"O@
rp

u
J
"r

J
v
J
, J3M1,2, nN . (27)

Before these equations are interpreted, the left-hand side of the "rst equation of (27) is fully
written as:

O
pr

v
J
"G

sh1,1vJ,1#sh1,2vJ,2#2#sh1,JvJ, j#2#sh1,rvJ,r
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shp,1vJ,1#shp,2vJ,2#2#shp,JvJ,j#2#shp,rvJ,r
H"r

J
u
J
. (28)

The interpretation of these equations is that all the information about the fault/damage is
contained in the observation matrix with SVs unequal to zero. In more detail:

f Equation (28) shows a weighting of the row elements of O
pr

through the components v
J,l of

the vector v
J
, which means a weighting of the symptom values and their summation for

each lifetime h
i
"const., i"1(1)p (including l"J ). The vector u

J
multiplied by the

corresponding SV p
J

is representative of the weighted sum of the symptoms taken
at h

i
"constants the components of u

J
characterize the modi"cation of the system

dependent on h
i
.

f The second equation in (27) represents a weighting of the columns of O
pr

, which means
a weighted (weighted by the components of u

J
) summation of the values of one symptom

over all lifetimes h
i
, i"1(1)p. The singular vector v

J
(multiplied by the SV p

J
) is

representative of the lifetime-dependent columns (each column designating one
symptom) of the observation matrix. It gives the sensitivity of the symptoms with respect
to system modi"cations, and it will help to check the choice of the symptoms chosen.

Consequently, the singular vectors and the SVs can be taken separately for assessment of
the modi"cations of the system dependent on the lifetime.

If the eigenvalue problems of the corresponding matrices are considered,

O@
rp

O
pr

x"jx ,

(29)

O
pr

O@
rp

y"jy ,

W
1
:"O@

rp
O
pr

, W
2
:"O

pr
O@

rp
. (30)
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Starting with relations (27) with running indices and multiplication the "rst one with
O@

rp
and the second relation with O

pr
, then the resulting right-hand sides can be substituted

by the relations themselves, obtaining

W
1
vl"O@

rp
O
pr
vl"p2l vl, l"1(1)r,

(31)

W
2
u
i
"O

pr
O@
rp

u
i
"p2

i
u
i
, i"1(1)p .

For the solutions i comparison of equation (31) with equation (29) yields

j
i
"p2

i
, p

i
'0, x

i
"v

i
, y

i
"u

i
, i"1(1)n . (32)

The following can be stated.

f The SVs and the corresponding singular vectors can, as is known, be computed with the
eigenvalue problems given above.

f The matrix W
2

can be decomposed by the vectors u
i
, which means it is a relationship

between the symptoms and the vectors u
i
. In more detail, with the use of equation (4),

W
2

can be written in the form

W
2
"C

s@h1sh1 s@h1sh2 2 s@h1shp
s@h2sh1 s@h2sh2 2 s@h2shp
2 2 2 2

s@hpsh1 s@hpsh2 2 s@hpshp
D"W @

2
. (33)

The matrix W
2

is similar to the correlation/covariance matrix in stochastics: it is equivalent
if the mean values of the rows are subtracted from their elements and if the symptoms can be
interpreted as random variables. The elements of W

2
are also similar to the modal assurance

criterion (MAC) [5]t of the row vectors of O
pr

if W
2

is divided by (elementwise)
(diagW

2
) diagW @

2
) as normalization. Through its values, it characterizes the orthogonality

between the lifetime-dependent symptom vectors. Mathematically, it can be taken for
orthonormalization of the vectors. Additionally, it tells us about the quality of the
choice of the vectors with respect to the lifetime modi"cations: large values of the out
of main-diagonal elements compared with the main-diagonal values indicate linear
dependency, which means redundant information with respect to h.

f The non-zero SVs (see equation (25)) can be used as a measure of fault/damage intensity,
as discussed in reference [11]. Starting with the eigenvector u

J
corresponding to the

largest eigenvalue p
J
"max

i
(p

i
), and choosing the eigenvectors corresponding to the next

smaller eigenvalues will provide a good assessment of the fault/damage intensity and
priority: if rows are equal, which is the case for an unmodi"ed system with respect to the
measured symptoms at corresponding lifetimes, then they produce SVs equal to zero (in
addition to the non-zero SV of the observation matrix of rank 1 corresponding to the
healthy system), providing that no rows are proportional which also yield SVs equal to
zero. Consequently, SVs unequal to zero indicate faults/damage, and, if ordered by their
tIt is the cosine of the angle between the corresponding vectors.
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magnitudes and, if considered the SV of the observation matrix in the healthy state, they
are ranking indices.

f For detection of the system modi"cations and for assessment of their intensities, one can
take the determinant value of the matrix of the SVs in its &&economy'' size [12], which is the
diagonal matrix of the non-zero SVs: linearly dependent rows of the observation matrix
(redundant information: nothing has changed in this lifetime step) which are cancelled,
and additional linearly independent rows will increase its value (see next paragraph).

f The fault-orientated decomposition of the observation matrix (see equation (26)) permits
the calculation of another fault discriminant, which is similar to equation (27) but with
much larger dynamics. According to reference [2] this discriminant is de"ned for the fault
J as

FD
J
:"p

J

p
+
i/1
A

r
+
l/1

u
J,i

v
J,lB .

where the components of the Jth singular vectors are u
J
":Mu

J,i
N and v

J
":Mv

J,lN.

5.1.2. Noise considerations

Starting with equation (26) but with complex elements,

O,O
pr
"URV*NW

2
"OO*"UR2U* . (34)

The SVs of O are the square roots of the eigenvalues of W
2
, while the left singular vectors are

the eigenvectors of W
2
, as already stated above. Now a perturbed matrix OI :"O#N is

assumed. If N describes uncorrelated white noise with zero mean, the variance EMNN*N is
asymptotically (for rPR, r according to the number of symptoms) given by

EMNN*/rN"p2I ,

p2 the variance of the noise process. This means that the noise is uniformly spread in the
observation space. It follows from the above that

EMO3 O3 */rN"EMOO*/rN#p2I .

For large r the SVD is [12]

O3 +U (R2#rp2I)1@2V3 *

for some disturbed unitary matrix V3 . It follows that in a "rst approximation the left singular

vectors remain the same, but the SV matrix increases with pJr. O3 is now of full rank and all
SVs are unequal to zero.

More generally, with regard to N it can be stated that the SVs increase by the order of
ENE, that is the largest SV of N. All the singular vectors are also perturbed by the order of
ENE. The e!ect on the singular vectors can be much larger if the corresponding SVs are
close to each other [13].

Finally, an example will illustrate the outstanding role of the smallest SV and the
corresponding left singular vector [12]. Two columns (symptom vectors) are assumed
which are nearly aligned (nearly common directions). Then the "rst singular vector u

1
is in

the direction of the sum of the symptom vectors 1
1

and 1
2
. The SV is p

1
"E1

1
#1

2
E/J2.
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Additionally, the second singular vector depends on the di!erence between the observation
vectors, with the SV p

2
"E1

2
!1

1
E/J2. If the angle between both symptom vectors

becomes smaller, then p
2
will become smaller and the observation matrix tends to a singular

matrix. Consequently, u
2

shows the most sensitive direction for perturbations on the
symptom vectors. The smallest SV is a!ected by a perturbation according to

p2
2
)pJ 2

2
)p2

2
#ENE2.

5.1.3. Perturbations seen as e+ects due to faults/damage

If the perturbations are seen as e!ects of faults/damage which increase with the lifetimes
h
i
, these e!ects can be used for detection (and localization in the case of discriminants) of

faults/damage. As can be derived from the example presented above, the smallest SV
depends strongly on the length of the observation vectors. This e!ect is more severe than the
e!ect of an increasing number of observation vectors. Additionally, the singular vector u

2
corresponding to the smallest SV has the most sensitive direction with respect to the
perturbation of the columns of O.

The conclusions drawn from the perturbation investigations interpreted as e!ects of
faults/damage are crucial. The largest SVs characterize the faults/damage; in brief, the
system modi"cations in the sense of ranking indices. However, the small SVs are most
sensitive with respect to lifetime-dependent system modi"cations. The right singular vectors
are more sensitive to changes of the observation matrix than the left singular vectors. And,
as stated above, the length of the observation vector is more serious than an increasing
number of observation vectors.

5.1.4. Example

A cantilever will serve for illustration. It can be interpreted with other dimensions, for
instance as a platform leg which su!ers from corrosion at the sea surface. The cantilever
length is 1)0 m, its cross-section 0)001190639]0)001190639 m2 with Young's modulus of
E"2)1]1011 N/m2 and density o"7850 kg/m3. The cantilever is clamped at x"0 (index
0), index 1 designates a point at x"0)3 m, index 2 designates the point x"0)4 m and index
3 characterizes x"l"1 m. It is assumed that between x"0)49 and 0)50 m the beam's
sti!ness is reduced by 5% in each lifetime step h

i
, i"1(1)10. This means that at time h

10
in

the interval described the sti!ness is reduced by 50%. The lifetime h
0

designates the time
without sti!ness reduction. Table 1 gives the chosen (simulated) measurements which will
TABLE 1

Symptom measurements

y (h
i
)
max,1

y (h
i
)
m,2

y(h
i
)
eff,3

M(h
i
)
eff,0

f (h
i
)
1

f (h
i
)
2

h
0

0)00389558 0)004216798 0)02029036 0)002508829 0)994798 6)2343
h
1

0)00389569 0)004217112 0)02029867 0)002508901 0)994730 6)2326
h
2

0)00389582 0)004217469 0)02030787 0)002508986 0)994648 6)2306
h
3

0)00389597 0)004217877 0)02031811 0)002509087 0)994552 6)2282
h
4

0)00389615 0)004218344 0)02032964 0)002509207 0)994439 6)2254
h
5

0)00389636 0)004218881 0)02034267 0)002509349 0)994304 6)2220
h
6

0)00389661 0)004219501 0)02035749 0)002509519 0)994143 6)2180
h
7

0)00389691 0)004220222 0)02037459 0)002509722 0)993949 6)2132
h
8

0)00389730 0)004221061 0)02039446 0)002509968 0)993715 6)2073
h
9

0)00389778 0)004222051 0)02041791 0)002510268 0)993429 6)2002
h
10

0)00389841 0)004223223 0)02044598 0)002510636 0)993074 6)1914
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serve as symptoms: they are sometimes insensitive with respect to the system modi"cation,
but they are chosen intentionally for discussion. The loading was a sinusoidal impulse
excitation with 1 Hz and an amplitude of 0.001 N. The observed symptoms are: y

max,1
, the

maximum de#ection at point 1, y
m,2

, the mean of the absolute values of the de#ection,
y
eff,3

, the r.m.s.-value of the de#ection at point 3, M
eff,0

, the r.m.s.-value of the bending
moment at the clamped end and f

1
, f

2
are the "rst two eigenfrequencies in Hz.

The T-operation (see equation (3)) has already been performed here. In order to
normalize the measurements and to make them dimensionless, the following transforms are
introduced:

shi,1 :"
y(h

i
)
max,1

!0)00389 [m]

1 [m]
105 ,

shi,2 :"
y(h

i
)
m,2

!0)00421 [m]

1 [m]
105 ,

shi,3 :"
y(h

i
)
eff,3

!0)0202 [m]

1 [m]
104 ,

shi,4 :"
M(h

i
)
eff,0

!0)002508 [Nm]

1 [Nm]
106 ,

shi,5 :"
f (h

i
)
1
!0)993 [Hz]

1 [Hz]
103 ,

shi,6 :"
f (h

i
)
2
!6)20 [Hz]

1 [Hz]
102 .

The symptom observation matrix then follows to

O
11,6

"

0)558 0)680 0)904 0)829 1)798 3)43

0)569 0)711 0)987 0)901 1)730 3)26

0)582 0)747 1)079 0)986 1)648 3)06

0)597 0)788 1)181 1)087 1)552 2)82

0)615 0)834 1)296 1)207 1)439 2)54

0)636 0)888 1)427 1)349 1)304 2)20

0)661 0)950 1)575 1)519 1)143 1)80

0)691 1)022 1)746 1)722 0)949 1)32

0)730 1)106 1)945 1)968 0)715 0)73

.

0)778 1)205 2)179 2)268 0)429 0)02

0)841 1)322 2)460 2)636 0)074 !0)01

The columns of the symptom observation matrix (symptom vectors) are illustrated in
Figure 6.



Figure 6. The observation vectors (columns of the symptom observation matrix).
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The SVD of the above matrix results in the non-zero SVs

Mr
i
N@"(11)0349, 4)8899, 0)2858, 0)0527, 0)0029, 0)0006)

with their product 1)4141]10~6. The corresponding matrices of the left and right singular
vectors are contained in Appendix A. The truncated symptom observation matrix (last row
eliminated, which means one less lifetime measurement) gives the non-zero SVs

Mr
i
N@"(10)7179, 3)9278, 0)0528, 0)0029, 0)0024, 0)0006)

with the product 9)2823]10~9; as already con"rmed by theory and examples, the products
of the resulting SVs grow with increasing damage measured through symptoms dependent
on an additional lifetime. The corresponding matrices of the singular vectors are also
presented in Appendix A. The comparison between the SVs of the full observation matrix
and the truncated one is shown in Figure 7. As can be seen, the system's evolution causes
growing SVs.

It is noted that two SVs do actually exist which are essentially di!erent from zero. This
fact is due to the undamaged state and the damage introduced, as already stated in the
paragraph singular values and singular vectors as characteristics of the system life.

The symmetric correlation matrix according to W
2

is given by

1)000 0)999 0)996 0)986 0)959 0)877 0)623 0)059 !0)448

1)000 0)999 0)992 0)969 0)895 0)652 0)096 !0)414

1)000 0)997 0)981 0)917 0)690 0)148 !0)366

1)000 0)993 0)977 0)819 0)223 !0)294

1)000 0)977 0)819 0)339 !0)177

1)000 0)922 0)530 0)036

1)000 0)818 0)421

1)000 0)866

1)000

!0)681 !0)656

!0)653 !0)628

!0)613 !0)628

!0)551 !0)525

!0)441 !0)420

!0)247 !0)220

0)148 0)172

0)691 0)703

0)960 0)959

.

1)000 0)992

1)000



Figure 7. The SVs of the full (L) and the truncated (]) observation matrix.
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It shows a strong correlation between neighbouring observation vectors and between the
"rst symptoms. Reversal correlation is also noted.

The MAC values from matrix W
2

are assembled in the following symmetric matrix:

1)000 0)999 0)995 0)987 0)970 0)940 0)878 0)778 0)620

1)000 0)999 0)993 0)979 0)951 0)898 0)804 0)653

1)000 0)998 0)989 0)966 0)920 0)835 0)692

1)000 0)996 0)981 0)944 0)869 0)739

1)000 0)994 0)969 0)908 0)793

1)000 0)990 0)949 0)855

1)000 0)984 0)920

1)000 0)975

1)000

0)411 0)360

0)449 0)399

0)495 0)446

0)552 0)505

0)621 0)575

0)703 0)661

0)796 0)760

0)092 0)063

0)970 0)951

.

1)000 0)994

1)000

It can be stated from the above two matrices that with growing lifetime measurements the
&&neighbourhood'' of the vectors decreases.

A comparison of the left singular vectors of the full observation matrix and the truncated
one is shown in Figure 8.

This academic example illustrates some of the statements made above, but it is not
a substitute for a real application or practical experience.

5.2. SOME REMARKS ON LARGE-SIZED OBSERVATION MATRICES

The integral operators ¹l with respect to the fast time co-ordinate t and applied to the
dynamic responses yield the symptoms dependent on the lifetime h. The integral operators
can also be chosen as Fourier or Laplace transform operators producing symptoms which
are dependent on the frequency u and on the lifetime h: s (h,u). Taking them, for example, as



Figure 8. Di!erence between the "rst three left singular vectors of the full and the truncated observation
matrix.
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pre-chosen discrete frequencies u
k
, k"1(1)K, will give additional rows in the observation

matrix which make the matrix very large.
Redundancy in the data may cause numerical di$culties. These data will not give any

additional information and they are therefore super#uous. In more detail, if some rows are
linearly dependent, then the interpretation is

(1) assuming the data are symptom values (this means that they are sensitive due to the
fault/damage sought), nothing has changed during the lifetimes considered;
(2) assuming the data are not sensitive enough with respect to the fault/damage expected,
then they are also super#uous. Depending on the interpretation of the data, classical rank
investigations will lead to "nding redundant data. Taking into account noise in the
measurements, investigations on close linear dependency will give the result for the
elimination of redundant vectors in the observation matrix.A

Another well-known tool is the subspace solution, which can be seen in the context of
SVD ( just for rank investigations). The SVD is initial information condensation.

In order to reduce the size of the observation matrix at the very outset of the monitoring
design, one should think in terms of sub-systems [14]. This means that it is su$cient to
measure in the near vicinity of the expected fault/damage, which requires a large amount of
prior knowledge, if one is interested in small local system modi"cations. The near vicinity is
de"ned as a sub-system which is related to one observation matrix with a relatively small
size compared with that of the total system.

5.3. SOME REMARKS ON THE LIFETIME SPACING

The choice of symptoms in the context of observability and controllability has already
been discussed in the previous sections. The question remains: when should the
lifetime-dependent symptoms be measured? Of course, this question cannot be answered
generally, but the answer depends on the system and its behaviour with regard to the
loadings considered. First, rapid changes must be registered in an interval that is not too
large. Then, for continuous symptom curves (see Figure 1), the lifetime spacings depend
ASee the statement regarding the determinant of the &&economy'' size of the diagonal matrix of SVs. Redundancy
of primary symptoms can be seen in the correlation/covariance matrix [2].
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on the curvature of the corresponding symptom curve (if known); mathematically, the
reconstruction of the corresponding curves should be possible through the chosen
discrete measurements. Physically, the fault/damage intensities should not increase to an
unacceptable extent. Here again it is seen that knowledge of a relationship between
symptom and fault/damage measure is important [1].

5.4. APPLICATION TO MONITORING AND DIAGNOSTICS: SUMMARY

The SVD of the symptom observation matrix (symptom subspace considerations) is
a powerful tool in the monitoring and diagnostics of technical systems in operation/service.
The symptom observation matrix can be a very large matrix during the lifetime of a system,
so the SVD is a step towards information condensation of the monitored data and an
available diagnostic tool. In some detail:

f the observation matrix contains the lifetime-dependent symptom vectors, which permits
information condensation via the SVD,

f the SVD results in generalized fault/damage indicators,
f in order to perform, for example, reliability investigations, one can relate one limit value

[9] to each generalized fault/damage instead of relating a limit value to each symptom as
in other techniques for monitoring and diagnosis,

f the matrix elements of W
2

(equation (33)) serve as symptom assurance criteria (SAC),
f the non-zero SVs, ordered by their magnitudes, are fault/damage ranking indices,
f the magnitudes of the SVs describe fault/damage intensities,
f the small SVs are most sensitive to system modi"cations (and to measuring distortions),
f the (directions of the) left singular vectors characterize the system modi"cations during

lifetime of the system. However, the right singular vectors are more sensitive than the left
singular vectors with respect to modi"cations.

6. CONCLUSIONS AND OUTLOOK

Monitoring and diagnosis of complex technical systems is recommended or necessary for
several reasons such as safety, reliability, risk management and economics, as itemized in
section 5.4.

Suitably chosen lifetime-dependent symptoms, discriminants and patterns of the system
in operation/service considered can be assembled in a (rectangular) symptom observation
matrix. The SVD of the observation matrix determines the dimension of the fault/damage
space of systems in operation/service, and it permits the redundancy of symptoms to be
reduced. Additionally, it yields generalized discriminants in order to trace the fault/damage
evolution.

The singular values and singular vectors are informative quantities/indicators for
fault/damage detection, evaluation, and possibly for their localization. However, the
system-dependent relationship between the SVs and/or the singular vectors and the
physical fault/damage including their locations is lacking.
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APPENDIX A

Left and right singular matrices of the full observation matrix:

U
11,11

"

0)3463 0)3342 !0)1416 !0)5354 !0)4004 !0)2754 0)0694 !0)0494 !0)2242 !0)3521 !0)2097
0)3415 0)2915 !0)1070 !0)2666 0)0112 0)6379 !0)0927 !0)1939 0)2016 0)1677 0)4402
0)3356 0)2417 !0)0740 !0)0252 0)2489 !0)1129 0)0001 0)1679 0)2684 0)5743 !0)5640
0)3282 0)1830 !0)0291 0)1540 0)2375 !0)5729 !0)0131 0)1929 !0)1105 0)1232 0)6204
0)3193 0)1147 0)0173 0)2821 0)3314 0)2901 0)1182 0)4585 0)0480 !0)6034 !0)1426
0)3081 0)0332 0)0805 0)3577 0)1588 !0)0497 !0)4920 !0)6319 !0)2100 !0)1469 !0)1866
0)2947 !0)0625 0)1441 0)3329 !0)2122 0)0768 0)7728 !0)2942 !0)1507 0)1422 !0)0086
0)2783 !0)1766 0)2167 0)2245 !0)5758 0)1697 !0)3591 0)4334 !0)2547 0)2281 0)0034
0)2575 !0)3150 0)3185 !0)0509 !0)2074 !0)2257 !0)0479 !0)1008 0)7617 !0)2004 0)0609
0)2323 !0)4816 0)4229 !0)4964 0)4082 0)0629 0)0442 0)0230 !0)3327 0)0690 !0)0151
0)2482 !0)5753 !0)7794 0)0076 !0)0001 !0)0009 !0)0001 !0)0052 0)0031 !0)0014 0)0017

V
6,6

"

0)1935 !0)1141 0)0439 !0)2650 0)8093 !0)4716
0)2705 !0)2136 0)0882 0)0589 !0)5282 !0)7687
0)4369 !0)4542 0)0646 0)7195 0)1879 0)2134
0)4258 !0)5046 !0)2288 !0)6113 !0)1673 0)3319
0)3661 0)2623 0)8566 !0)1726 !0)0510 0)1760
0)6190 0)6416 !0)4472 0)0717 !0)0097 0)0004

.

Left and right singular matrices of the truncated observation matrix:

U10,10"

0)3673 0)3396 0)5367 !0)4002 !0)0138 0)2790 !0)0320 !0)2083 !0)3072 !0)2912
0)3609 0)2876 0)2671 0)0038 0)2297 !0)6813 0)1035 0)3625 0)1917 0)1412
0)3530 0)2270 0)0265 0)2571 !0)2545 0)1550 !0)2229 !0)4120 0)2503 0)6214
0)3433 0)1557 !0)1538 0)2370 0)0210 0)5775 0)2895 0)5657 0)1860 !0)0748
0)3319 0)0728 !0)2816 0)3406 !0)2834 !0)2480 !0)1123 !0)2567 0)1484 !0)6685
0)3175 !0)0261 !0)3594 0)1458 0)4110 !0)0129 !0)4213 0)0870 !0)6178 0)1112
0)3003 !0)1420 !0)3345 !0)2154 0)0993 !0)0941 0)7355 !0)3587 !0)1552 0)1374
0)2794 !0)2801 !0)2254 !0)5585 !0)5529 !0)0884 !0)2321 0)3200 0)0110 0)1043
0)2532 !0)4476 0)0466 !0)2244 0)5312 0)1453 !0)2329 !0)1636 0)5343 !0)1154
0)2215 !0)6490 0)4928 0)4143 !0)1871 !0)0319 0)1248 0)0642 !0)2414 0)0347

V
6,6

"

0)1843 !0)1305 0)2626 0)8063 0)1010 0)4688
0)2535 !0)2376 !0)0629 !0)5314 0)0835 0)7655
0)4006 !0)4890 !0)7208 0)1879 0)0023 !0)2135
0)3842 !0)5256 0)6237 !0)1583 !0)2406 !0)3228
0)3896 0)1995 0)1269 !0)0843 0)8617 !0)2104
0)6648 0)6107 !0)0493 0)0068 !0)4271 0)0166

.
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